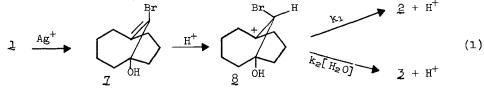

Tetrahedron Letters No. 45, pp 4473 - 4476, 1973. Pergamon Press. Printed in Great Britain.

CONCLUSIVE EVIDENCE FOR AND STEREOCHEMISTRY OF PROTONATION OF COMPOUNDS CONTAINING A BRIDGEHEAD DOUBLE BOND IN A SEVEN-MEMBERED RING¹ Philip Warner,* José Fayos, and Jon Clardy² Ames Laboratory-USAEC and Department of Chemistry Iowa State University, Ames, Iowa 50010

(Received in USA 29 August 1973; received in UK for publication 25 September 1973)


We have been interested in the cationic generation of bridgehead double bonds.³ Recently, while our work was in progress, a report⁴ of the intermediate formation of such a moiety, via the silver-assisted solvolysis of l, appeared. However, since the product observed, 2, was a ring-opened monocycle, one could not be sure of its mode of formation. Furthermore, the stereochemistry of 2 was unknown. We now report a more extensive investigation of the solvolysis of l and $\frac{1}{2}$ (reported to yield 5^4), establishing the intermediacy of a species with a bridgehead double bond.⁵,11

Fortunately, we began our investigation with the study of $\frac{4}{2}$. After workup of the solvolysate formed by treatment of $\frac{4}{2}$ with varying amounts of AgClO₄ in 95% aqueous acetone, attempted dissolution in CCl₄ led to the formation of a white precipitate [mp 174-176° (partial decomposition, sealed tube)]. The mass spectrum gave a parent ion for $\underline{6}$. $\underline{6}$ proved soluble in CDCl₃; ir and especially nmr [δ 5.44, mult. (vinylic H's); δ 4.54 (H₁₀); δ 2.87 (H_{2a} and H_{5a}, |J_{2a,2b}| = |J_{5a}, _{5b}| =16 Hz); δ 2.31 (H_{2b} and H_{5b} (shown to be coupled to vinylic H's); δ 1.4-2.3 (2H₇, 2H₈, 2H₉ and 2 hydroxyl H's) were in complete accord with structure $\underline{6}$, as was the analysis. Of prime interest is the stereochemistry of $\underline{6}$ at C₁₀. Long-range, W-type coupling between H_{2b} (but not H_{2a}) and H₁₀ (|J|=2Hz) showed that the bromine atom resides <u>syn</u> to the four-carbon bridge.

In order to absolutely prove the stereochemistry of \pounds , a single crystal x-ray analysis was performed. Crystals obtained from hot CCl₄ solution were of the space group $P_{2_1/C}$ ($C_2^{5}h$); there were eight molecules in a unit cell of dimension <u>a</u>=l1.84(1), <u>b</u>=l2.52(1), <u>c</u>=l6.19(1)Å and β =l20.99(3)°. The structure was solved by heavy atom methods and fully refined to a discrepancy index of 0.087 for the 1806 diffractometer measured structure factors. Both molecules in the asymmetric unit are the same and have mirror symmetry within experimental error (0.02Å and 1°). All bond distances and angles appear normal. The sixmembered ring is in the chair conformation, while six of the seven carbons of the seven-membered ring (C₁-C₆) are almost in a plane, with the bouble bond tipped slightly away from C₁₀.⁶ The C₁-C₆ distance is 2.58±0.02Å.

With the structure of \oint unequivocally established, it was felt that another look at the solvolysis of 1 would show that the minor, unidentified product $(\underline{ca} 5\%)$ reported by Reese⁴ was 2. Catalytic hydrogenation (Pt/C, EtOAc) of \oint gave a quantitative yield of 2 [mp 148-150°, sealed tube; mass spec, analysis, ir and nmr (δ 4.39, H₁₀; δ 1.5-2.4, 16 H, aliphatics and hydroxyls) in accord with the structure]. Nmr showed 2 was, indeed, the other product. Table I gives the yields of the key products under the conditions studied. Also, since the mechanism illustrated by equations (1) and (2) seems most likely,⁷ the derived ratios of rate constants for intermolecular collapse (k_2) and unimolecular fragmentation (k_1) are given

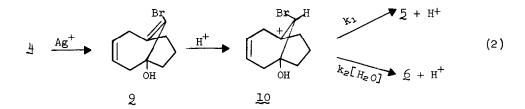


Table I. Absolute yields of solvolysis products from 1 and 4.

Starting Material ^a	Products (Yield) ^b	Solvent	k ₂ /k1 ^C	Ref.
l	2(50%), 3(ca. 5%), 11(15%) ^d		0.036	e
1	옻(43%),곷(15%),⊥ᢩl (13%) ^d	90%aq.>=0	0.065	this work
4	5(44%), 6(18%)	9 5% aq>=0	0.15	this work
4	<u>5</u> (27%), <u>6</u> (44%)	90%aq.>=0	0.30	this work

^aFor [starting material] between $0.02\underline{M}$ and $0.06\underline{M}$ and between 1 and 2 equivalents of AgClO₄; note $[H_2O] = 2.78\underline{M}$ or $5.56\underline{M}$; ^bBoth 5 and 6 were independently subjected to the reaction conditions (simulated by allowing bromoethane to react with AgClO₄ in the presence of 5 or 6 in 90% aqueous acetone). In each case, an 80% yield of the starting material (5 or 6) was reisolated, with no observable amounts of interconversion between 5 and 6. Therefore the observed product ratios are those of kinetic control. ^cRefer to eqs (1) and (2); the absolute values of k₂ and k₁ may be different in each case; ^d11 is $\Delta^{1,7}$ bicyclo[5.3.0]decen-2-one, formed via an alkyl shift route; ^eReference 4.

As is consistent with expectations for a more polar solvent, the rate of intermolecular collapse of both $\underline{8}$ and $\underline{10}$ approximately doubled, relative to the fragmentation rate, upon doubling the water content. More importantly, however, $\underline{10}$ was persistently some 5 times more prone to intermolecular collapse than $\underline{8}$, as compared to fragmentation. This means that $\underline{10}$ is longer lived (<u>i.e.</u> more stable) than $\underline{8}$, and we attribute this to homoallylic delocalization in $\underline{10}$. At this point, we are unsure whether the bridgehead double bonds of $\underline{7}$ and $\underline{9}$ are rehybridized,^{8,9} since the stereochemistry of protonation can be explained on the basis of steric approach control.

Lastly, we comment on the rates of silver-assisted solvolysis of $\underline{1}$ and $\underline{4}$. The statement⁴ that both are rapid at room temperature in the presence of excess AgClO₄ is misleading. We have studied the reaction semiquantitatively in the presence of from one to ten equivalents of AgClO₄. The reaction of $\underline{1}$ is rapid (in 90% aq. acetone, room temp., over in 20-30 min) even in the presence of 1 equivalent of AgClO₄. However, with 1 equivalent of AgClO₄, $\frac{1}{2}$ (at an initial concentration of 0.03<u>M</u>) requires <u>ca</u>. 3 days at room temperature for complete reaction (90% aqueous acetone), and follows roughly <u>first-order</u> kinetics ($t_{1/2} \approx$ 14-15 hrs). With a large excess of AgClO₄ (4-5 fold), $\frac{1}{2}$ reacts rapidly. This behavior is expected if a fast complexation equilibrium of Ag⁺ with the double bond of $\frac{1}{2}$ occurs, and if the equilibrium constant is reasonably large (<u>i.e.</u>, > 1); this sort of complexation has precedence.¹⁰

REFERENCES

- 1. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the Atomic Energy Commission for support of this research.
- 2. Camille and Henry Dreyfus Foundation Teacher-Scholar Grant Awardee, 1972-1977; Fellow of the Alfred P. Sloan Foundation, 1973-1975.
- 3. P. Warner, R. LaRose, C. Lee and J. Clardy, J. Amer. Chem. Soc., 94, 7607 (1972).
- 4. C. B. Reese and M. R. Stebles, Chem. Commun., 1231 (1972).
- 5. Our results in HOAc and CF_3CO_2H (both catalyzed and uncatalyzed) initially led us to question the completeness of Reese's report;² these results will be published soon.
- 6. This is in accord with the very small $J_{2a,3}$ observed by nmr.
- 7. Other evidence (R. LaRose, unpublished results) indicates that a competitive synchronous addition of $\rm H_2O$ to 9 is unlikely.
- 8. (a) W. L. Mock, Tetrahedron Lett., 475 (1972); (b) L. Radom, J. A. Pople and W. L. Mock, <u>161d.</u>, 479 (1972).
- 9. In a recent case [C. Batich, O. Ermer, E. Heilbronner and J. R. Wiseman, <u>Ang. Chem. Int. Ed. Eng., 12</u>, 312 (1973)], photoelectron spectroscopy has failed to give a definitive answer to the question of *m*-bond deformation.
- 10. J. Solodar and J. Petrovich, <u>Inorg. Chem.</u>, <u>10</u>, 395 (1971).
- 11. A referee has suggested that maybe a partially opened cyclopropyl cation is formed from 1 or 4, which in turn gives 3 or 6 without the intermediacy of 7 or 9. This is, however, inconsistent with the solvent dependence of the 2:3 and 5:6 ratios; we feel 8 and 10 are required intermediates, but how are they formed? Can a cationic species add H₂O synchronously to give 8 or 10? Possibly, but it should be noted that we observe some dimer formation from 9-0Ac in HOAc (P. Warner, unpublished results).